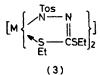
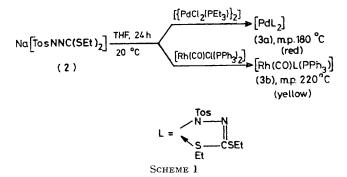
Aspects of the Co-ordination Chemistry of some Electron-rich Polyorganosulphur Compounds; Bis(ethylthio)carbene Complexes $[M(CO)_{5}{C(SEt)_{2}}]$ (M = Cr or W) from Na[TosNNC(SEt)_{2}] (Tos = MeC_{6}H_{4}-p-SO_{2})^{\dagger}

By MICHAEL F. LAPPERT,* and DAVID B. SHAW


(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Reaction of $[M(CO)_5(NCMe)] (M = Cr \text{ or } W)$ with Na[TosNNC(SEt)₂] (Tos = MeC₆H₄-p-SO₂) gives the stable di(alkylthio)carbene-Cr⁰ or -W⁰ complex (see title), not formed via the olefin C₂(SEt)₄, because the latter instead affords the S-, SS"-, or SS'S"-olefin complex [Cr(CO)₅(olefin)], [W(CO)₄(olefin)], or [W(CO)₃(olefin)]; d⁸ metal chloro-complexes and Na[TosNNC(SEt)₂] yield metallocycles, such as (**3**).

WE report a new synthesis [equation (1)] of carbene-group 6-metal(0) complexes (1), using the sodium salt of the tosylhydrazone of a dithiocarbonate, (2), as carbenoid precursor.

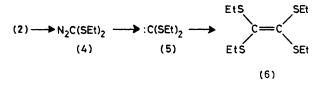

The di(alkylthio)carbene-metal derivatives (1) (see Table) are members of a new class of carbene-ligand complex [C(SPh)₂ analogues have been obtained¹ from LiC(SPh)₃];

† No reprints available.

they are remarkably stable, although attempts to obtain the molybdenum compound by a similar procedure were unsuccessful. The i.r. $\nu(CO)$ data for complexes (1) are appropriate for a pentacarbonyl of $C_{4\nu}$ symmetry. The value of the $a_1 \nu(CO)$ mode for complex (1b) is intermediate between those for $[W(CO)_5 \{C(SR)R'\}]$ and $[W\{C(NHR)R'\}-(CO)_5]^2$ suggesting a charge transfer sequence from carbene ligand to $[W(CO)_5]: C(SR)R' < C(SR)_2 < C(NHR)R'$. The C_{earb} ¹³C n.m.r. chemical shift in $[W(CO)_5 \{C(SEt)_2\}]$, 209 p.p.m. downfield from SiMe₄, is similar to that found in

 $[W{CN(R)CH_2CH_2NR}(CO)_5]$,³ but at much higher field than that for $[W(CO)_5{COMe)R}]$,² reflecting the substantial shielding of C_{carb} by π -electron donation from the adjacent S atoms.

Reaction of (2) with a d^8 metal chloro-complex affords a metallocycle (3), [ML₂], (satisfactory analytical data) (e.g., as


TABLE. Selected physical properties of some carbonylmetal(0) complexes derived from Na[TosNNC(SEt)_2], C2(SEt)4, or

$(=CSCH_2CH_2S)_2$; all	gave satisfactory	analytical results
--------------------------	-------------------	--------------------

Compound	M.p. (°C)	Colour	I.r. v(CO) (cm ⁻¹) ^a	¹ H N.m.r. ^b (τ)
(1a)	52	Orange-red	2068, 1949	6·5 q, 8·4 t
(1b)	44	Red	2066, 1942	6·4 q, 8·4 t
(7)	52–55	Yellow	2066, 1947, 1941, 1929	6·9 m, 8·5 m
(8)	38–40	Yellow-green	2025, 1920, 1902, 1894	6·85 m, 7·45 q, 8·65 t, 8·8 t
(9)	94–98	Yellow (pale)	2073, 1952, 1945, 1933	6·4 d
(10)	220 (decomp.)	Red	1994, 1927, 1900	7·0 m, 8·6 m

^a In n-C₆H₁₄. ^b In CDCl_a.

in Scheme 1), in which the integrity of the N_2CS_2 skeleton is retained in the chelate ligand L. Evidently, elimination of NaCl is preferred over loss of NaTos.

SCHEME 2

The mechanism of formation of the carbenemetal complexes (1) may in principle involve three possible intermediates: the diazoalkane (4), the carbene (5), or the olefin (6) (Scheme 2), because it has been demonstrated⁴ that the tosylhydrazone salt (2) decomposes in tetrahydrofuran (THF) at 65 °C to give the olefin (6); the use of various traps makes the participation of the carbone (5) in the reaction (Scheme 2) plausible $[e.g., 4 (2) + PPh_3 \rightarrow Ph_3P=C(SEt)_2]$.

The olefin (6) is not implicated in the formation of the carbenemetal complexes (1), because $C_2(SEt)_4$ reacts with $[M(CO)_{5}(NCMe)]$ or $[M(CO)_{6}]$ under irradiation, using the conditions of equation (1), to give complexes $[\mbox{Cr(CO)}_{5}\mbox{-}$ $\{C_2(SEt)_4\}$] (7) or $[W(CO)_4\{C_2(SEt)_4\}]$ (8); from spectroscopic data both (7) and (8) (see Table) are believed to have the metal in an octahedral environment with the olefin behaving, respectively, as an S- or an SS"-ligating donor. Similarly, $[Cr(CO)_{s}]$ and the cyclic olefin (=CSCH₂CH₂S)₂ gave $[Cr(CO)_5(olefin)]$ (9) (see Table). It is interesting to contrast these results with those on the electron-rich enamines $C_2(NMe_2)_4$ or the cyclic [= $CN(R)CH_2CH_2NR$]₂; both afford NN"-olefin complexes, but only the latter yields carbene-

metal complexes, e.g., [W {CN(R)CH₂CH₂NR }(CO)₅].³ From $[W(CO)_3(cycloheptatriene)]$ and $C_2(SEt)_4$ in n-hexane at 60 °C, the SS'S''-olefin complex $[W(CO)_3 \{C_2(SEt)_4\}]$ (10) (see Table) was isolated.

We thank the S.R.C. for award of a studentship to D. B. S.

(Received, 9th November 1977; Com. 1164.)

¹ H. G. Raubenheimer and H. E. Swanepoel J. Organometallic Chem., 1977, 141, C21.

² Cf., D. J. Cardin, B. Çetinkaya, and M. F. Lappert, Chem. Rev., 1972, 72, 545.
³ M. F. Lappert and P. L. Pye, J.C.S. Dalton, 1977, 1283.
⁴ U. Schöllkopf and E. Wiskott, Angew. Chem. Internat. Edn., 1963, 2, 485; D. M. Lemal and E. H. Banitt, Tetrahedron Letters, 1964, 245.